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Summary

Background and Aims: Presenting the statistical fundamentals of ATOM and its concurrent 
algorithms, with particular respect to demonstrate the flexibility of the decision-making 
module.
Methods: Simulating different classification problems using the Scikit Learn machine learning 
program package. During these simulations, the sample size, the number of variables, the 
number of groups, the proportion of incorrect classifications, and the distance between the 
groups were systematically changed.
Results: Based on 180 datasets, the Multilayer Perceptron performed the best in about 52% 
of the cases, and the Support Vector Classifier came in second place. It was found that every 
method proved to be better than any other in at least one case, which means that if we are 
dealing with a company or job where the given problem arises, these procedures provide 
a more accurate result. In addition, profound differences between different parameters of the 
same procedure were observed.
Discussion: Considering that the job selection aims to filter the best candidates, the accuracy 
of all procedures increases and, in general, it was shown that ATOM’s algorithms indicate 
a performance much above the expected value of random categorization.
Keywords: recruitment automation, machine learning, psychological testing, multi-method 
approach
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Introduction

Recruitment aims to provide the employer 
with appropriate human resources as cost-
effectively as possible. Therefore, the 
selected employees must be able to perform 
the necessary tasks and have the cognitive 
and behavioural competencies required 
by the job (Hmoud & Varallyai, 2019). An 
effective selection process consists of several 
interrelated sub-processes but generally starts 
with defining the necessary tasks and abilities 
for the job, then continues with searching for 
and assessing the candidates, and ends with 
contracting the new employee (Ployhart, 
2006). In the outlined process, human activity 
is essential since the selection cannot be, or 
is difficult to generalise. For the same reason, 
cognitive biases and heuristics decision-
making are deeply rooted in selection 
(Whysall, 2018, Soleimani et al., 2022). For 
this reason, companies increasingly use 
recruitment software and attempt to partially 
or fully automate recruitment (Hmoud & 
Varallyai, 2019; Soleimani et al., 2022; 
Gonzalez et al., 2022; Liem et al., 2018).

Explanatory  
and predictive models

The primary goal of psychological science 
is to understand human behaviour (Yarkoni 
& Westfal, 2017). So, psychology primarily 
wants to explain phenomena with the 
simplest and most parsimonious models 
possible while placing less emphasis on 
prediction. So, in the vast majority of cases, 
psychology acts based on Occam’s razor in 
model and theory formulation, i.e., it uses 
the most straightforward model with good 
explanatory power. The consequence is that 

the results can be only generalised within a 
closed theoretical framework and often have 
negligible predictive power (Robinaugh et 
al., 2021). In contrast, machine learning 
methods (especially deep neural networks) 
aim to maximise the prediction accuracy of 
the models. At the same time, mostly they do 
not provide an understandable explanation 
for how the phenomenon works (Yarkoni & 
Westfal, 2017). In that case, although it will 
provide a precise prediction for the given 
phenomenon, we will not (necessarily) know 
which variables and to what extent played 
a role in the outcome. Applied psychology 
often works with complex systems; therefore, 
the explanation of the processes is usually 
not the goal, mainly due to the scarcity of 
time and resources. Instead, the focus is on 
decision-making. Machine learning methods 
gained popularity in psychology, aiming to 
help professionals make decisions, such as 
in clinical diagnostics (Dwyer et al., 2018; 
Coutanche & Hallion, 2019). In the analysis 
of psychological experiments (Koul et al., 
2018), academic success (Halde et al., 2016), 
and labour success (Liem et al., 2018).

The question is, do we want to understand 
the role of the factors involved during recruit-
ment, or do we only want to provide a predic-
tion? Suppose we only keep the explanation 
in mind. In that case, our selection process 
will probably be inflexible and not general-
isable to other jobs, but we will earn a good 
understanding of the job’s requirements. On 
the other hand, if we keep the prediction in 
mind and select the examined variables well 
in our model, our prediction will be accurate. 
However, if the variables are not appropriate, 
we will be unable to correct the prediction’s 
inaccuracy.

In an ideal recruitment framework, one 
can optimise both aspects simultaneously: 
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giving a good prediction and indicating which 
variables play a role in the prediction come 
hand in hand (Kárász & Takács, this special 
issue).

Unique properties of 
recruitment data

The data arising from recruitment can be 
classified as ‘soft’ data. Its variability is much 
greater than data from physical measure-
ment tools (Tannahil, 2007). Many times, 
this measurement error masks the other-
wise complex data generation process. Due 
to the uncertainty of the variables, even 
 complicated processes can appear linear 
(Yarkoni & Westfal, 2017). In order to reduce 
this uncertainty, work simulators and other 
instruments closer to physical measuring 
devices are often used in the field of work 
psychology (e.g., ErgoScope [Izsó, Berényi, 
& Takács, this special issue]).

The fact that it is difficult to access a large 
amount of data under given working conditions 
also contributes to the bias. Filling out long 
questionnaires can take a given employee out 
of production for several hours – however, it 
is difficult to make good predictions from 
a small amount of data (Yarkoni & Westfal, 
2017). If going through the test battery takes 
a long time, missing data and systematic 
distortion of the test result occur more often 
(Nagybányai Nagy, 2013). That is why it is 
crucial to only ask for data that is needed – but 
we can only determine optimal test battery 
from preliminary measurements (Kárász & 
Takács, this special issue).

In addition, the quality of the data can also 
be questionable. There are often no established 
criteria for evaluating the performance of 
employees (Maji and Bera, 2020; van Esch 

et al., 2019). In many jobs, it is impossible 
to use objective performance indicators, and 
we can only obtain performance measures 
based on the subjective evaluation of HR 
professionals (Kárász & Takács, this special 
issue). Often, the selected psychological 
scales do not have predictive power, even 
in the case of high-reliability performance 
evaluations. The use of measurement tools 
is often limited to the kind of psychological 
tests the job has access to and whether they 
evaluate the effectiveness of the tests in the 
given recruitment process (Izsó, Berényi, & 
Takács, this special issue). The strength of the 
predictions largely depends on the quality of 
the input data. Analyses with low-quality data 
can raise serious validity problems – but these 
can also be handled to a significant extent 
by using different, more robust statistical 
procedures (Gergely & Vargha, 2021). It is 
often difficult to determine the quality of the 
data, but the multi-method approach adopted 
during the replication crisis can help a lot in 
drawing accurate conclusions. The essence of 
the multi-method methodology is that a given 
number of adequate statistical procedures are 
performed on a statistical question, then the 
obtained results are aggregated, thus making 
a more robust decision.

At the same time, the disadvantage 
of systems using more robust or complex 
methods is that the output data are difficult 
to interpret by professionals. Interpretability 
can be helped by providing the minimum 
information necessary for decision-making. 
For example (Izsó, Berényi, & Takács, this 
special issue) found that the feedback on the 
order of applicants and their classification 
into only two discrete acceptance categories 
can be sufficient for making a decision.
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Decision-making module of 
ATOM framework

ATOM is a modular web-based framework 
that includes the compilation of the test battery, 
the organisation of recruitment campaigns, 
the analysis of the results, and the provision 
of automatic psychological feedback (Kárász 
& Takács, this special issue). Due to this struc-
ture, the goal of ATOM is to reduce the need 
for human resources in recruitment campaigns, 
thereby becoming a cheaper and more conve-
nient alternative to traditional testing. 

Training and test data 
requirements

ATOM’s decision-making module is a flexible 
machine-learning framework combining 
several statistical methods. In each case, the 
input data consist of subscales of psychological 
and performance tests that have been validated 
and have high reliability. The subscale score 
is given by the sum of the items weighted to 
the subscale, which is standardised before 
the analyses (with a mean of 0 and a standard 
deviation of 1). The purpose of standardisation 
is to make the different subscales comparable, 
which is often a prerequisite for applied 
machine learning algorithms (Kárász & 
Takács, this special issue).

We need two types of input data to use 
the decision-making module: a training and 
a testing data file. In this case, the testing 
dataset represents the questionnaire results 
of the individuals applying for the given 
position, while the training dataset can be 
obtained from two sources. In the training 
data, we need information about whether 
an individual was proven to be a suitable 
candidate for a given job. 

If the recruiting company has many 
employees, we can obtain the training data 
from the questionnaires filled out by these 
employees. Then these results must be 
labelled. Labelling means that the employees 
participating in the testing are classified into 
one of the predefined discrete groups (i.e., 
suitable, conditionally suitable, or not suitable 
for the position). These discrete groups can be 
created based on more objective performance 
measures (e.g., how many partners a sales 
employee contracts within a year), or the 
subjective evaluation of specialists can also 
provide the labelling. Expert evaluation is 
often fraught with cognitive biases, so to 
create optimal labelling, we need to ask for 
the opinions of several independent experts 
(Hallgren, 2012). Of course, the phenomenon 
of ‘garbage in, garbage out’ arises here, i.e., if 
the algorithms are trained with low-quality 
data, then the result (classification) will also 
be of poor quality. It is important to note that 
the decision-making module is structured in 
such a way that we can indicate the quality 
of the classification and the importance of 
the psychological and performance variables 
used, thus improving the efficiency of 
labelling and testing in the future.

If the recruiting company has few employ-
ees or there is no time for testing and labelling 
employees, then the quantification of expert 
opinions is a possible direction. Hmoud and 
Varallyai (2019) emphasise that the first 
step of the recruitment process is analysing 
the given job and assessing the necessary 
competencies. Hence, HR experts and work 
psychologists have a professional profile and 
optimally choose measurement instruments 
for this professional profile. ATOM’s deci-
sion module can quantify this professional 
profile based on the measurement tools. 
First, the experts indicate which variables 
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are  important, moderately important, or not 
important for the given job and also define the 
results required to be classified in the  suitable 
candidate category. After that, we create 
a mixture of multidimensional normal distri-
butions, which is parameterised based on the 
given expert values, whereas the non-determi-
nable parameters (e.g., covariance) are fixed 
based on several different models (Gergely 
& Vargha, 2021). Labelling is defined here 
by belonging to a given component of the 
mixture distribution. The resulting artificial 
datasets reflect the expert opinion, but at the 
same time, they also include the uncertainty 
of the expert opinion.

It is important to note that the two 
student data file types cannot only operate 
independently of each other. For example, it 
may be the case that the company has few 
employees, but we take the tests with them, 
but to have a sufficient number of items, we 
also take the expert opinion into account.

Concurrent algorithms, 
hyperparameters, and cross-

validation

If we have surveyed the employees or 
created the learning datasets, the next step 
is to fit the selected algorithms to the data. 
During the data analysis phase, the algorithms 
must predict the labels defined in the learning 
dataset, and the quality of the algorithm is 
determined by the accuracy of this prediction. 
The main idea behind ATOM’s decision-
making module is the use of concurrent 
algorithms, i.e., in contrast to the general 
practice (which specifies a model for the given 
use), several machine learning algorithms run 
in parallel, and the goal is to select the best 
solution for the given situation. The main 

advantage of competing algorithms is that 
they can adapt to the diversity of workplace 
selection, training data of varying size and 
quality, expert evaluation, and the specific 
characteristics of the job and latent data 
generation processes.

In order to optimally use and evaluate 
multiple algorithms together, three steps 
are required: hyperparameter setting, cross-
validation, and measurement of the prediction 
accuracy.

Hyperparameters are the values that 
inf luence how a given algorithm works. 
Different algorithms can have different 
hyperparameters, and it is usually impossible 
to determine a combination of values that gives 
the best result in every case. In order to make 
it possible to measure which setting is the 
most optimal, we defined a hyperparameter 
space for each algorithm, with which we can 
determine which hyperparameter setting 
is the most suitable for the given problem 
by testing the algorithm with all possible 
hyperparameter combinations.

Some of the algorithms are not flexible. 
Logistic regression, being a generalised 
linear model, can fit one kind of function 
(a sigmoid function), while neural networks 
with different parameterisations can use 
many different non-linear functions. To take 
advantage of the strengths of the different 
algorithms, we use the method used for 
hyperparameter setting in this case as well. 
We create a model and hyperparameter list, 
the combination of which we fit the data and 
measure their effectiveness.

Machine learning algorithms learn based 
on how accurately they can predict the training 
dataset’s labels. By increasing the flexibility 
of the procedure, we increase the possibility 
of overfitting. Overfitting means that the 
algorithm only learns the data, i.e., it will not 
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be able to reveal general patterns so that it 
will provide a suboptimal prediction in the 
case of previously unseen data. To minimise 
this possibility, we performed cross-validation 
on the entire model and hyperparameter 
space. The essence of cross-validation is to 
randomly divide the learning dataset into 
n equal parts and then create all possible 
(i.e., n pieces) partial learning datasets. The 
partial learning sets consist of n – 1 equal 
part, and the quality of the algorithm is tested 
only on the remaining one data part. This way, 
we test the algorithm’s effectiveness on data 
that it has never seen before. We perform 
this process on all (n pieces) of the learning 
data set and then average the accuracy of the 
prediction, thus obtaining an estimate of how 
well the given algorithm performs on data it 
has not yet seen.

So far, we have not precisely defined what 
we mean by the efficiency of the algorithm 
and the quality of the prediction. There 
are several measures for this, depending 
on what we want to maximise/minimise in 
the given application. In this study, for the 
sake of simplicity, we used the percentage 
of correctly classified cases as an efficiency 
indicator. The percentage of correctly 
classified cases measures the percentage 
of predicted labels that match the actual 
labelling. In real selection situations, it makes 
sense to use several efficiency indicators, 
as the goal is usually not to categorise all 
applicants accurately but to filter out the 
best applicants. They will be forwarded to 
the interview process. In this case, a good 
efficiency indicator can be the percentage of 
correctly classified cases or the rate of false 
positives in the suitable candidate category. 
In summary, during the analysis phase, 
we select the algorithm-hyperparameter 
combination that receives the best score in 

the cross-validation procedure based on our 
determined efficiency measure.

Selected algorithms

During the construction of the decision-
making module, the Python programming 
language was used in combination with the 
open-source Scikit-Learn program package 
(Python, 2021; Pedregosa et al., 2011).

Since we defined our dependent variable 
as a discrete category, we chose supervised 
learning algorithms that can solve classification 
problems. The complexity of the algorithms 
and the fact that the selected algorithms use 
different heuristics also played a role in the 
selection.

ATOM’s decision-making module current-
ly supports Logistic Regression (Wright, 
1995), its regularised version (Cherkassky & 
Ma, 2003), the Support Vector  Classifier algo-
rithm family, Random Forest (Breiman, 
2001), Adaboost (Freund & Schapire, 
1997) and Multilayer Perceptron (Collobert 
et al., 2004).

Both the advantage and disadvantage 
of Logistic Regression lie in its simplicity: 
it is a generalised linear model capable of 
solving classification problems and requires 
few parameters for its operation. The Support 
Vector Classifier is a family of algorithms 
effective for multi-dimensional problems, 
even when the number of variables is  larger 
than the number of sample elements. In 
addition, it is flexible since the function used 
for decision-making can be influenced by 
using different kernels. The disadvantage is 
that the probability of overfitting increases 
in the case of many variables. In such cases, 
regularisation and cross-validation should 
be used. Random Forest and Adaboost are 
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ensemble methods that combine several simple 
prediction algo rithms (typically decision trees). 
While Random Forest is an  averag  ing method 
that builds decision trees in depen dent ly and 
then aggregates their results, Adaboost makes 
sequential estimates, i.e., builds a more 
efficient one from several weaker classifi-
cation algorithms. Finally, the Multilayer 
Perceptron belongs to the family of artificial 
neural networks (ANN), but its version used 
in ATOM has only one hidden layer. The 
advantage of this solution is flexibility, its 
disadvantage is that it needs to estimate the 
weight and bias of the edges, which depends 
on the width of the input, output, and the 
hidden layer.

Output data  
and model evaluation

The final step in the decision-making module 
is to provide the output data. The most basic 
output data is the predicted labelling, and how 
the algorithms categorised the applicants. In 
some cases, this may be sufficient to select 
the applicants who enter the interview 
process, but the disadvantage is that it does 
not indicate how uncertain the decision 
was. The uncertainty of the decision can 
be quantified with labelling probabilities. 
When calculating the labelling probability, 
we do not classify the applicants under a 
label but give the probability of belonging 
to each group. For example, let us take two 
applicants; both of them were classified in 
the suitable category, but when we examine 
the labelling probability, we see that one 
belongs to the successful group with a 90% 
probability, while the other only with 65%.

In addition, we need to use measures that 
provide information about the performance of 

the models. Since not all methods can test the 
significance of the variables or indicate their 
importance, we used the Shap-value method 
(Shapley & Snow, 1952; Bowen & Ungar, 
2020), which estimates the contribution of 
each variable to the prediction.

The purpose of this study is to demonstrate 
the flexibility of ATOM’s decision- making 
module using simulations. In the case of differ-
ent types of data occurring in the selection, the 
advantage of using several methods together 
prevails. So, in the case of simulated datasets, 
there will be at least one time when the given 
algorithm family gives the most accurate 
estimate, and the accuracy of the estimates 
will be similar between the models.

Methods

After the literature presentation and ATOM’s 
methodology, the question may arise: Why 
is it necessary to use several concurrent 
process algorithms? In the machine learning 
literature, researchers traditionally present 
one procedure and compare it with algorithms 
created for a similar purpose or application. 
In this research, we want to show that using 
several simpler procedures (with fewer 
parameters) can achieve the robustness 
necessary to use data from psychological 
testing for recruitment.

The system is analysed using a simulation 
study. We created different classification 
problems during the simulation using the 
Scikit Learn machine learning program 
package (Pedregosa et al., 2011; Python, 2021). 
When creating the classification problems, we 
changed the size of the sample, the number 
of variables, the number of groups, the 
proportion of incorrect classifications, and 
the distance between the groups.
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The sample size was 50, 100, 200, 500 
and 1000, respectively, meaning that the 
total sample size for the training dataset was 
one of the values above. We considered that 
the sample size in psychology is often small 
and rarely exceeds 1,000 people. In addition, 
the sample size also ref lects the number 
of individuals who can be tested on the 
Hungarian labour market; usually, medium-
sized enterprises have around 50 employees, 
and in the case of large companies, it is not 
uncommon for a workforce of over 1,000 
people (KSH, 2018).

The number of variables was divided into 
two categories: explanatory and redundant. 
Explanatory variables are those that can 
significantly predict which group the test 
person belongs to, while redundant variables 
are those that have no predictive power. The 
number of generated explanatory variables 
was 5, 10 and 20, respectively, for which we 

also created 10 redundant variables in each 
case. Redundant variables were considered 
important because it is common in workplace 
selection that some performance indicators do 
not have direct predictive power for the given 
job and are often used only because they are 
available or included in the test battery used 
by the company. An important question, 
in this case, is whether our automated 
procedures can filter these redundancies, 
thereby providing information about which 
variables should be used in the future.

The number of groups, i.e., the defined 
classes, was 2, 3 and 4. Here, we found that 
in practice, the inaccuracy of the grading 
increases as the number of categories increas-
es in most companies. This is because the 
2-point scale usually carries the essential 
information (suitable, not suitable candidate), 
and the 3-point scale (suitable, conditionally 
suitable, not suitable).

Table 1. Different parameters of the simulation setups

Parameters Values
Sample size 50 100 200 500 1000
No. variables 5 10 20
Redundant variables 10
No. groups 2 3 4
Proportion of incorrect 
classifications

0.01 0.1

Distance between groups 1 0.75
Total 180 classification problems

Source: created by the authors based on simulation details

We used the so-called incorrect classification 
ratio (0.01, 0.1), which means that 1% and 10% 
of the cases are already included incorrectly 
in the training dataset. Partly due to the 
inaccuracy of the suitability scale mentioned 
in the previous paragraph and partly due to the 
heuristic nature of human classification, we 

used these incorrect classification rates since 
it is assumed there are also false groupings in 
real datasets. This allows us to test the extent 
to which the learning algorithms can correct 
these evaluation biases.

The distance of the groups was set to 
1 and 0.75, which means how ‘separated’ 
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the clusters are from each other. A larger 
value means more separation, which results 
in an easier classification problem, while a 
smaller value means less separation and 
a more difficult classification problem. 
In a system where there are significant 
differences between suitable and not suitable 
candidates (1 standard deviation), we can 
expect significantly better results than in a 
case where the difference between them is 
smaller (0.75 standard deviations). Here, 
this should be understood as the number 
of standard deviation differences between 
the mean values when creating the mixture 
distributions.

We simulated a classification dataset with 
all possible combinations of these parameters, 
resulting in 180 different problems. Then, we 
ran the algorithms of ATOM framework with 
different parameterisations on each data file.

The effectiveness of the different algo-
rithms and their different parameterisations 
was measured by the average accuracy of 
the classification (number of correct classi-
fications / all cases). In this study, we used 
the first version of the ATOM, which only 
included accuracy as an outcome measure. 
For each algorithm, we present the number 
of cases when the given method provided the 
best accuracy. Moreover, we report the rank 
means over all 180 simulations. 

To test and visualise the performance 
differences between algorithms and their 
different parameterisations, we perform 
a Kruskal-Wallis test with Bonferroni 
 corrected pairwise comparisons and present 
the accuracy’s median and the median 
absolute deviance.

1   All the simulations were running on a 2022 Apple Macbook Pro with an M1 Pro chip. The used 
packages were available for arm-type systems.

Results

First, we consider the runtime of the simu-
lations. The total runtime of the simulations 
study was approximately 11 minutes.1 For 
the smaller datasets (50, 100) the grid search 
algorithm took only a few seconds (1-5s), 
none of the larger datasets took longer than 30 
seconds to finish. Support Vector Classifier 
was the slowest to fit, albeit having the most 
parameters to sweep through with the grid 
search algorithm. Overall, we think that the 
speed of the algorithm is more than adequate 
for its use cases.

In the first step, we present which algo-
rithm provided the most accurate prediction 
across all 180 datasets. In 51.1% of the cases, 
the Multilayer Perceptron, i.e., the neural 
network with one hidden layer, provided the 
best prediction, and the Support Vector Clas-
sifier came in second place. It is important to 
note here that the different parameterisations 
were not considered, the ratios here show how 
many times the given procedure provided 
the best prediction regardless of the different 
settings.
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Figure 1. Number of cases when each algorithm provided the best prediction  
and the mean rank of the algorithms over all simulation

Source: the results were calculated and visualised using Python

However, the simulation aimed to show 
cases where it is unclear which procedure 
to choose. There were 10 classification 

problems each where Logistic Regression 
and the Logistic Pipe gave the most accurate 
prediction.
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Figure 2. Median and median absolute deviation of accuracy for all algorithms  
and their parameterisations over all simulations

Source: the results were calculated and visualised using Python
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That is, all methods except Adaboost proved 
to be better than any other in at least one case. 
This means that if we deal with a company or 
a job where the given problem arises, these 
procedures provide a more accurate result. 
However, the actual data cannot be analysed 
based on the simulation aspects since we 
usually have no information which procedure 
will be the most suitable before the analysis.

At the same time, we also examined 
the median accuracy of the procedures on 
all datasets and their median absolute devi-
ations. There can be big differences even 
between different parameters of the same 
procedure. Based on the Kruskall-Wallis test 
[H(5) = 111,656; p < 0.001], and the pairwise 
comparisons, there are significant differences 
in the performance of the algorithms2, and 
 ultimately the algorithms can be ranked 
as Multilayer Perceptron, SVC, Random 
Forrest, Logistic Regression, Logistic Pipe 
and Adaboost, respectively. 

Most importantly, all average results are 
typically above the 0.5 bands. This means 

2  Based on the Shapiro-Wilk test, the accuracies were likely non-normal in all cases. 

that even in the case of a 2-valued prediction 
(success/failure), the prediction procedures 
have better results than completely arbitrary 
decision-making.

However, it is rarely important to classify 
each applicant accurately on the employer’s 
side. It is much more important how well the 
given algorithm can guess the top 10% of 
applicants (the best 5–10–20 applicants), as 
these candidates will typically be the ones 
who will participate in the interview process.

Thus, we also looked at the median and 
median absolute deviations of the percentage 
of correctly classified cases for the top 10% of 
employees. In this case, the best method was 
the neural network: with a mean percentage 
of correctly classified cases of 70% and 
a standard deviation of 28%. So, if we are 
only interested in who the experts are, we 
can show an acceptable accuracy (in the case 
of 2 categories, we can show a rate of well 
over 50%).

Table 2. Post hoc comparison with Bonferroni correction

Post hoc comparisons - Accuracy
Mean 

Difference SE t Cohen’s d ptukey pbonf 

AdaBoost- 
Classifier
 

Logistic- 
Regression -0.046 0.011 -4.245 -0.274 < .001 < .001

Logisticpipe -0.047 0.015 -3.095 -0.283 0.024 0.030
MLPClassifier -0.141 0.015 -9.255 -0.845 < .001 < .001
RandomForest- 
Classifier -0.088 0.012 -7.074 -0.527 < .001 < .001

SVC -0.035 0.010 -3.477 -0.212 0.007 0.008
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Post hoc comparisons - Accuracy
Mean 

Difference SE t Cohen’s d ptukey pbonf 

Logistic- 
Regression
 

Logistic- 
pipe -0.001 0.014 -0.103 -0.009 1.000 1.000

MLPClassifier -0.096 0.014 -6.850 -0.571 < .001 < .001
RandomForest- 
Classifier -0.042 0.011 -3.924 -0.253 0.001 0.001

SVC 0.010 0.008 1.297 0.062 0.787 1.000

Logistic- 
pipe
 

MLPClassifier -0.094 0.018 -5.334 -0.562 < .001 < .001
RandomForest- 
Classifier -0.041 0.015 -2.681 -0.245 0.079 0.111

SVC 0.012 0.013 0.881 0.071 0.951 1.000

MLP- 
Classifier

RandomForest- 
Classifier 0.053 0.015 3.479 0.318 0.007 0.008

SVC 0.106 0.013 7.865 0.633 < .001 < .001
RandomForest- 
Classifier SVC 0.053 0.010 5.187 0.316 < .001 < .001

Note:  P-value adjusted for comparing a family of 6
Source: the results were calculated using JASP (Love et al., 2019)

Discussion

In this study, we presented the decision-
making module of the ATOM framework and 
the advantage of the competitive algorithms 
method with the help of a simulation study.

ATOM’s decision-making module was 
designed to answer the questions outlined 
in the introduction, namely the uncertainty 
coming from psychological assessment in 
recruitment scenarios. This uncertainty 
is often due to the small amount of data 
available for a given position. In case of a 
small sample size ATOM can quantify the 
expert evaluation of the different suitability 
categories and create a mixed dataset of 
actual and simulated candidates. Since 
companies rarely provide objective labelling 
of their employers, ATOM supports the good 
practice that HR experts independently 

assess the suitability of the employers. In 
the expert evaluation process, it is worth 
expecting high interrater reliability before 
starting the analysis. The goal is therefore 
not to exclude HR professionals from 
recruitment – but to best allocate their 
capacity and make the most optimal use 
of their expertise in the pre-screening and 
interview phase. In the case of longer-term 
cooperation, the amount of recruitment data 
is increasing over time, thus the prediction 
will be gradually better, but the quantifi-
cation of expert opinion can reduce the 
cold start period, where our predictions are 
less than adequate. If a company is using 
ATOM for a longer period, it will gather 
data about not only the suitable candidates, 
but also the candidates who have not met 
the expectations. This way, the training 
sample becomes more representative of 
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the suitability categories; therefore, the 
algorithms will be more accurate overall.

It is important to note that the goal is not to 
accurately predict all categories of candidates. 
The goal is, instead, to identify who are the 
most suitable and likely to succeed, from whom 
the company can select the best candidates 
for the interview process. This process is 
facilitated by ATOM’s decision- making 
module by freely changing the efficiency 
measures, thereby tailoring the analysis to the 
expectations of the job.

We selected algorithms that are not based 
on the same mathematical background; 
they require different assumptions and 
have varying robustness. That is, while the 
Support Vector Classifier is sensitive to 
the kernel type, it achieves good results in 
cases where the number of variables used is 
high. AdaBoost is not sensitive but tends to 
overfit in the case of many variables. At the 
same time, the power of the decision-making 
module is manifested in the fact that we do 
not have to take these assumptions into 
account, since these algorithms compete 
with each other on the training dataset, with 
different parameterisations and automatic 
model selection.

To account for the uncertainty of the 
outcomes, instead of just presenting the 
predicted suitability, we also report the 
probabilities of belonging to each category. 
In this way, employers can create their own 
rankings: filtering the least likely succeeding 
candidates or selecting the most potent ones 
(Izsó, Berényi, & Takács, this special issue).

Based on the simulation, we can say, 
that in the case of our developed system, 
the selected algorithms create a f lexible 
framework. Moreover, all algorithms, except 
the Adaboost provided the best prediction 
in at least one case. Nevertheless, it was 

expected that the neural network would 
produce the best results due to the algorithm’s 
robustness (Collobert & Bengio, 2004).

Concerning the accuracy of the predic-
tion, we did not experience any substantial 
differences between the different methods and 
their different parameterisations. The average 
performance was above 50% respectively. 
Note that the expected value of a completely 
random selection is 35%. So, each algorithm 
results in a much more accurate categorisa-
tion on average. If we consider that the job 
selection aims to filter the best candidates, the 
accuracy of all procedures increases and, in 
general, our algorithms show a performance 
well above the expected value of random 
categorisation (rate of 35%).

The current algorithm’s limitation is that 
it selects a single model in each case and 
does not account for the strength of different 
models. A model selection resembling the 
Bayesian model averaging would be more 
suitable than choosing the most accurate 
model. Furthermore, the algorithm’s flexibili-
ty needs to be further assessed with different 
types of data and jobs. 

The limitation of the simulation study 
is that the simulated datasets all came from 
a mixture of normal distributions, with 
equal distances between the centroids of the 
components.
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Összefoglaló

ATOM – egy rugalmas, több módszert alkalmazó gépi tanulási keretrendszer 
a munkahelyi beválás előrejelzésére

Háttér és célkitűzések: Jelen kutatás bemutatja az ATOM szoftvert és annak statisztikai 
megfontolásait, különös tekintettel a döntéshozatali modul rugalmasságának demonstrálására.
Módszer: Scikit Learn segítségével különböző osztályozási problémákat szimuláltunk. 
A szimulációk során szisztematikusan változtattuk a minta méretét, a változók számát, 
a csoportok számát, a hibás osztályozások arányát és a csoportok közötti távolságot.
Eredmények: A 180 szimulált adatállomány alapján a Multilayer Perceptron az esetek 
mintegy 52%-ában a legjobban teljesített, a második helyen pedig a Support Vector Classifier 
végzett. Megállapítottuk, hogy minden módszer legalább egy esetben jobbnak bizonyult 
a többinél, ami azt jelenti, hogy ha olyan céggel vagy munkakörrel foglalkozunk, ahol az adott 
probléma felmerül, akkor ezek az eljárások pontosabb eredményt adnak. Ezenkívül lényeges 
különbségeket figyeltünk meg ugyanazon eljárás különböző paraméterezései között.
Következtetések: Tekintettel arra, hogy a kiválasztás célja a legjobb jelöltek kiszűrése, az 
összes eljárás pontossága növekszik, ha csak a legegyertelműbben kategorizálhatókat keressük. 
Általánosságban megmutatkozott, hogy az ATOM algoritmusai a véletlenszerű kategorizálás 
várható értékét jóval meghaladó teljesítményt jeleznek.
Kulcsszavak: munkaerő-kiválasztás automatizációja, gépi tanulás, pszichológiai tesztelés, 
konkurens algoritmusok alkalmazása
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